
Threads 

A thread is a single sequential flow of execution of tasks of a process so it is also known 
as thread of execution or thread of control. There is a way of thread execution inside 
the process of any operating system. Apart from this, there can be more than one 
thread inside a process. Each thread of the same process makes use of a separate 
program counter and a stack of activation records and control blocks. Thread is often 
referred to as a lightweight process. 

 

The process can be split down into so many threads. For example, in a browser, many 
tabs can be viewed as threads. MS Word uses many threads - formatting text from one 
thread, processing input from another thread, etc. 

Need of Thread: 
o It takes far less time to create a new thread in an existing process than to create 

a new process. 

o Threads can share the common data, they do not need to use Inter- Process 
communication. 

o Context switching is faster when working with threads. 

o It takes less time to terminate a thread than a process. 



Types of Threads 
In the operating system, there are two types of threads. 

1. Kernel level thread. 

2. User-level thread. 

User Level Threads 

In this case, the thread management kernel is not aware of the existence of threads. 
The thread library contains code for creating and destroying threads, for passing 
message and data between threads, for scheduling thread execution and for saving 
and restoring thread contexts. The application starts with a single thread. 

 

Advantages 
• Thread switching does not require Kernel mode privileges. 
• User level thread can run on any operating system. 
• Scheduling can be application specific in the user level thread. 
• User level threads are fast to create and manage. 



Disadvantages 
• In a typical operating system, most system calls are blocking. 
• Multithreaded application cannot take advantage of multiprocessing. 

Kernel Level Threads 

In this case, thread management is done by the Kernel. There is no thread 
management code in the application area. Kernel threads are supported directly by 
the operating system. Any application can be programmed to be multithreaded. All 
of the threads within an application are supported within a single process. 

The Kernel maintains context information for the process as a whole and for 
individuals threads within the process. Scheduling by the Kernel is done on a thread 
basis. The Kernel performs thread creation, scheduling and management in Kernel 
space. Kernel threads are generally slower to create and manage than the user 
threads. 

Advantages 
• Kernel can simultaneously schedule multiple threads from the same process 

on multiple processes. 
• If one thread in a process is blocked, the Kernel can schedule another thread 

of the same process. 
• Kernel routines themselves can be multithreaded. 

Disadvantages 
• Kernel threads are generally slower to create and manage than the user 

threads. 
• Transfer of control from one thread to another within the same process 

requires a mode switch to the Kernel. 
The important differences between Process and Thread: 

 

Parameter Process Thread 

Definition Process means a program is in 
execution. 

Thread means a segment of a 
process. 

Lightweight The process is not Lightweight. Threads are Lightweight. 

Termination time The process takes more time to 
terminate. 

The thread takes less time to 
terminate. 

Creation time It takes more time for creation. It takes less time for creation. 



Parameter Process Thread 

Communication 
Communication between 
processes needs more time 
compared to thread. 

Communication between threads 
requires less time compared to 
processes. 

Context switching 
time 

It takes more time for context 
switching. 

It takes less time for context 
switching. 

Resource Process consume more resources. Thread consume fewer resources. 

Treatment by OS 
Different process are tread 
separately by OS. 

All the level peer threads are 
treated as a single task by OS. 

Memory The process is mostly isolated. Threads share memory. 
Sharing It does not share data Threads share data with each other. 
 


